October 2014 >
MonTueWedThuFriSatSun
29300102030405
06070809101112
13141516171819
20212223242526
27282930310102

Tuesday, 07 October 2014

12:53 PM

Validating generalized incremental joint variant calling with GATK HaplotypeCaller, FreeBayes, Platypus and samtools (local copy) [Blue Collar Bioinformatics] 12:53 PM, Tuesday, 07 October 2014 03:00 AM, Thursday, 11 November 2021

Incremental joint variant calling Variant calling in large populations is challenging due to the difficulty in providing a consistent set of calls at all possible variable positions. A finalized set of calls from a large population should distinguish reference calls, without a variant, from no calls, positions without enough read support to make a call. Calling algorithms should also be able to make use of information from other samples in the population to improve sensitivity and precision. There are two issues with trying to provide complete combined call sets. First, it is computationally expensive to call a large number of samples simultaneously. Second, adding any new samples to a callset requires repeating this expensive computation. This N+1 problem highlights the inflexibility around simultaneous pooled calling of populations. The GATK team's recent 3.x release has a solution to these issues: Incremental joint variant discovery. The approach calls samples independently but produces a genomic VCF (gVCF) output for each individual that contains probability information for both variants and reference calls at non-variant positions. The genotyping step combines these individual gVCF files, making use of the information from the independent samples to produce a final callset. We added GATK incremental joint calling to bcbio-nextgen along with a generalized implementation that performs joint calling with other variant callers. Practically, bcbio now supports this approach with four variant callers: GATK HaplotypeCaller (3.2-2) – Follows current GATK recommended best practices for calling, with Variant Quality Score Recalibration used on whole genome and large population callsets. This uses individual sample gVCFs as inputs to joint calling. FreeBayes (0.9.14-15) – A haplotype-based caller from Erik Garrison in Gabor Marth's lab. Platypus (0.7.9.2) – A recently published haplotype-based variant caller from Andy Rimmer at the Wellcome Trust Centre for Human Genomics. samtools (1.0) – The recently released version of samtools and bcftools with a new multiallelic calling method. John Marshall, Petr Danecek, James Bonfield and Martin Pollard at Sanger have continued samtools development from Heng Li's code base. The implementation includes integrated validation against the Genome in a Bottle NA12878 reference standard, allowing comparisons between joint calling, multi-sample pooled calling and single sample calling. Sensitivity and precision for joint calling is comparable to pooled calling, suggesting we should optimize design of variant processing to cater towards individual calling and subsequent finalization of calls, rather than pooling. Generalized joint calling enables combining multiple sets of calls under an identical processing framework, which will be important as we seek to integrate large publicly available populations to extract biological signal in complex multi-gene diseases. Terminology There is not a consistent set of terminology around combined variant calling, but to develop one, here is how I'll use the terms: Joint calling – Calling a group of samples together with algorithms that do not need simultaneous access to all population BAM files. GATK's incremental joint calling uses gVCF intermediates. Our generalized implementation performs recalling using individual BAMs supplemented with a combined VCF file of variants called in all samples. Pooled or batch calling – Traditional grouped sample calling, where algorithms make use of read data from all BAM files of a group. This scales to smaller batches of samples. Single sample calling – Variant calling with a single sample only, not making use of information from other samples. Squaring off or Backfilling – Creating a VCF file from a group of samples that distinguishes reference from no-call at every position called as a variant in one of the samples. With a squared off VCF, we can use the sample matrix to consider call rate at any position. Large populations called in smaller batches will not be able to distinguish reference from no-call at variants unique to each sub-pool, so will need to be re-processed to achieve this. Implementation bcbio-nextgen automates the calling and validation used in this comparison. We aim to make it easy to install, use and extend. For GATK HaplotypeCaller based joint genotyping, we implement the GATK best practices recommended by the Broad. Individual sample variant calls produce a gVCF output file that contains both variants as well as probability information about reference regions. Next, variants are jointly called using GenotypeGVFs to produce the final population VCF file. For the other supported callers – FreeBayes, Platypus and samtools – we use a generalized recalling approach, implemented in bcbio.variation.recall. bcbio-nextgen first calls each individual sample as a standard VCF. We then combine these individual sample VCFs into a global summary of all variant positions called across all samples. Finally we recall at each potential variant position, producing a globally squared off joint callset for the sample that we merge into the final joint VCF. This process parallelizes by chromosome region and by sample, allowing efficient use of resources in both clusters and large multiple core machines. bcbio.variation.recall generalizes to any variant caller that supports recalling with an input set of variants. Knowing the context of potential variants helps inform better calling. This method requires having the individual sample BAM file available to perform recalling. Having the reads present does provide the ability to improve recalling by taking advantage of realigning reads into haplotypes given known variants, an approach we'll explore more in future work. The implementation is also general and could support gVCF based combining as this becomes available for non-GATK callers. Generalized joint calling We evaluated all callers against the NA12878 Genome in a Bottle reference standard using the NA12878/NA12891/NA12892 trio from the CEPH 1463 Pedigree, with 50x whole genome coverage from Illumina's platinum genomes. The validation provides putative true positives (concordant), false negatives (discordant missing), and false positives (discordant extra) for all callers: Overall, there is not a large difference in sensitivity and precision for the four methods, giving us four high-quality options for performing joint variant calling on germline samples. The post-calling filters provide similar levels of false positives to enable comparisons of sensitivity. Notably, samtools new calling method is now as good as other approaches, in contrast with previous evaluations, demonstrating the value of continuing to improve open source tools and having updated benchmarks to reflect these improvements. Improving sensitivity and precision is always an ongoing process and this evaluation identifies some areas to focus on for future work: Platypus SNP and indel calling is slightly less sensitive than other approaches. We worked on Platypus calling parameters and post-call filtering to increase sensitivity from the defaults without introducing a large number of false positives, but welcome suggestions for more improvements. samtools indel calling needs additional work to reduce false positive indels in joint and pooled calling. There is more detail on this below in the comparison with single sample samtools calling. Joint versus pooled versus single approaches We validated the same NA12878 trio with pooled and single sample calling to assess the advantages of joint calling over single sample, and whether joint calling is comparable in quality to calling simultaneously. The full evaluation for pooled calling shows that performance is similar to joint methods: If you plot joint, pooled and single sample calling next to each other there are some interesting small differences between approaches that identify areas for further improvement. As an example, here are GATK HaplotypeCaller and samtools with the three approaches presented side by side: GATK HaplotypeCaller sensitivity and precision are close between the three methods, with small trade offs for different methods. For SNPs, pooled calling is most sensitive at the cost of more false positives, and single calling is more precise at the cost of some sensitivity. Joint calling is intermediate between these two extremes. For indels, joint calling is the most sensitive at the cost of more false positives, with pooled calling falling between joint and single sample calling. For samtools, precision is currently best tuned for single sample calling. Pooled calling provides better sensitivity, but at the cost of a larger number of false positives. The joint calling implementation regains a bit of this sensitivity but still suffers from increased false positives. The authors of samtools tuned variant calling nicely for single samples, but there are opportunities to increase sensitivity when incorporating multiple samples via a joint method. Generally, we don't expect the same advantages for pooled or joint calling in a trio as we'd see in a larger population. However, even for this small evaluation population we can see the improvements available by considering additional variant information from other samples. For Platypus we unexpectedly had better calls from joint calling compared to pooled calling, but expect these differences to harmonize over time as the tools continue to improve. Overall, this comparison identifies areas where we can hope to improve generalized joint calling. We plan to provide specific suggestions and feedback to samtools, Platypus and other tool authors as part of a continuous validation and feedback process. Reproducing and extending the analysis All variant callers and calling methods validated here are available for running in bcbio-nextgen. bcbio automatically installs the generalized joint calling implementation, and it is also available as a java executable at bcbio.variation.recall. All tools are freely available, open source and community developed and we welcome your feedback and contributions. The documentation contains full instructions for running the joint analysis. This is an extended version of previous work on validation of trio calling and uses the same input dataset with a bcbio configuration that includes single, pooled and joint calling:

Feeds

FeedRSSLast fetchedNext fetched after
XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Bits of DNA XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
blogs.perl.org XML 12:00 AM, Tuesday, 18 January 2022 12:15 AM, Tuesday, 18 January 2022
Blue Collar Bioinformatics XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Boing Boing XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Epistasis Blog XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Futility Closet XML 12:00 AM, Tuesday, 18 January 2022 12:15 AM, Tuesday, 18 January 2022
gCaptain XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Hackaday XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
In between lines of code XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
InciWeb Incidents for California XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
LeafSpring XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Living in an Ivory Basement XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
LWN.net XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Mastering Emacs XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Planet Debian XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Planet Emacsen XML 12:00 AM, Tuesday, 18 January 2022 12:15 AM, Tuesday, 18 January 2022
RNA-Seq Blog XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
RStudio Blog - Latest Comments XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
RWeekly.org - Blogs to Learn R from the Community XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
The Adventure Blog XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
The Allium XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
Variance Explained XML 12:00 AM, Tuesday, 18 January 2022 12:30 AM, Tuesday, 18 January 2022
January 2022
MonTueWedThuFriSatSun
27282930310102
03040506070809
10111213141516
17181920212223
24252627282930
31010203040506
December 2021
MonTueWedThuFriSatSun
29300102030405
06070809101112
13141516171819
20212223242526
27282930310102
November 2021
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29300102030405
October 2021
MonTueWedThuFriSatSun
27282930010203
04050607080910
11121314151617
18192021222324
25262728293031
September 2021
MonTueWedThuFriSatSun
30310102030405
06070809101112
13141516171819
20212223242526
27282930010203
August 2021
MonTueWedThuFriSatSun
26272829303101
02030405060708
09101112131415
16171819202122
23242526272829
30310102030405
July 2021
MonTueWedThuFriSatSun
28293001020304
05060708091011
12131415161718
19202122232425
26272829303101
June 2021
MonTueWedThuFriSatSun
31010203040506
07080910111213
14151617181920
21222324252627
28293001020304
May 2021
MonTueWedThuFriSatSun
26272829300102
03040506070809
10111213141516
17181920212223
24252627282930
31010203040506
April 2021
MonTueWedThuFriSatSun
29303101020304
05060708091011
12131415161718
19202122232425
26272829300102
March 2021
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29303101020304
February 2021
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
November 2020
MonTueWedThuFriSatSun
26272829303101
02030405060708
09101112131415
16171819202122
23242526272829
30010203040506
September 2020
MonTueWedThuFriSatSun
31010203040506
07080910111213
14151617181920
21222324252627
28293001020304
July 2020
MonTueWedThuFriSatSun
29300102030405
06070809101112
13141516171819
20212223242526
27282930310102
June 2020
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29300102030405
May 2020
MonTueWedThuFriSatSun
27282930010203
04050607080910
11121314151617
18192021222324
25262728293031
April 2020
MonTueWedThuFriSatSun
30310102030405
06070809101112
13141516171819
20212223242526
27282930010203
February 2020
MonTueWedThuFriSatSun
27282930310102
03040506070809
10111213141516
17181920212223
24252627282901
January 2020
MonTueWedThuFriSatSun
30310102030405
06070809101112
13141516171819
20212223242526
27282930310102
December 2019
MonTueWedThuFriSatSun
25262728293001
02030405060708
09101112131415
16171819202122
23242526272829
30310102030405
November 2019
MonTueWedThuFriSatSun
28293031010203
04050607080910
11121314151617
18192021222324
25262728293001
October 2019
MonTueWedThuFriSatSun
30010203040506
07080910111213
14151617181920
21222324252627
28293031010203
August 2019
MonTueWedThuFriSatSun
29303101020304
05060708091011
12131415161718
19202122232425
26272829303101
July 2019
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29303101020304
June 2019
MonTueWedThuFriSatSun
27282930310102
03040506070809
10111213141516
17181920212223
24252627282930
May 2019
MonTueWedThuFriSatSun
29300102030405
06070809101112
13141516171819
20212223242526
27282930310102
April 2019
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29300102030405
March 2019
MonTueWedThuFriSatSun
25262728010203
04050607080910
11121314151617
18192021222324
25262728293031
February 2019
MonTueWedThuFriSatSun
28293031010203
04050607080910
11121314151617
18192021222324
25262728010203
January 2019
MonTueWedThuFriSatSun
31010203040506
07080910111213
14151617181920
21222324252627
28293031010203
December 2018
MonTueWedThuFriSatSun
26272829300102
03040506070809
10111213141516
17181920212223
24252627282930
31010203040506
November 2018
MonTueWedThuFriSatSun
29303101020304
05060708091011
12131415161718
19202122232425
26272829300102
October 2018
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29303101020304
September 2018
MonTueWedThuFriSatSun
27282930310102
03040506070809
10111213141516
17181920212223
24252627282930
August 2018
MonTueWedThuFriSatSun
30310102030405
06070809101112
13141516171819
20212223242526
27282930310102
July 2018
MonTueWedThuFriSatSun
25262728293001
02030405060708
09101112131415
16171819202122
23242526272829
30310102030405
June 2018
MonTueWedThuFriSatSun
28293031010203
04050607080910
11121314151617
18192021222324
25262728293001
May 2018
MonTueWedThuFriSatSun
30010203040506
07080910111213
14151617181920
21222324252627
28293031010203
April 2018
MonTueWedThuFriSatSun
26272829303101
02030405060708
09101112131415
16171819202122
23242526272829
30010203040506
February 2018
MonTueWedThuFriSatSun
29303101020304
05060708091011
12131415161718
19202122232425
26272801020304
January 2018
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29303101020304
December 2017
MonTueWedThuFriSatSun
27282930010203
04050607080910
11121314151617
18192021222324
25262728293031
November 2017
MonTueWedThuFriSatSun
30310102030405
06070809101112
13141516171819
20212223242526
27282930010203
September 2017
MonTueWedThuFriSatSun
28293031010203
04050607080910
11121314151617
18192021222324
25262728293001
August 2017
MonTueWedThuFriSatSun
31010203040506
07080910111213
14151617181920
21222324252627
28293031010203
March 2017
MonTueWedThuFriSatSun
27280102030405
06070809101112
13141516171819
20212223242526
27282930310102
January 2017
MonTueWedThuFriSatSun
26272829303101
02030405060708
09101112131415
16171819202122
23242526272829
30310102030405
November 2016
MonTueWedThuFriSatSun
31010203040506
07080910111213
14151617181920
21222324252627
28293001020304
October 2016
MonTueWedThuFriSatSun
26272829300102
03040506070809
10111213141516
17181920212223
24252627282930
31010203040506
September 2016
MonTueWedThuFriSatSun
29303101020304
05060708091011
12131415161718
19202122232425
26272829300102
August 2016
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29303101020304
July 2016
MonTueWedThuFriSatSun
27282930010203
04050607080910
11121314151617
18192021222324
25262728293031
May 2016
MonTueWedThuFriSatSun
25262728293001
02030405060708
09101112131415
16171819202122
23242526272829
30310102030405
April 2016
MonTueWedThuFriSatSun
28293031010203
04050607080910
11121314151617
18192021222324
25262728293001
December 2014
MonTueWedThuFriSatSun
01020304050607
08091011121314
15161718192021
22232425262728
29303101020304
October 2014
MonTueWedThuFriSatSun
29300102030405
06070809101112
13141516171819
20212223242526
27282930310102